IL-27 Promotes Proliferation of Human Leukemic Cell Lines Through the MAPK/ERK Signaling Pathway and Suppresses Sensitivity to Chemotherapeutic Drugs
نویسندگان
چکیده
IL-27 is a pleiotropic cytokine of the IL-6/IL-12 family with diverse biological functions. Previous in vivo studies have suggested the antitumor activities of IL-27 in animal models, whereas clinical observations indicate the link of IL-27 in tumor progression. IL-27 has recently been shown to cause inhibition of proliferation on primary leukemic cells from pediatric patients, but information on its role in human leukemic cell lines is limited. In the present study, we investigated the ability of IL-27 to regulate cell growth and survival of various human leukemic cell lines. Our results showed that in human leukemic cell lines coexpressing both IL-27R chains, IL-27Rα and gp130, IL-27 did not inhibit cell growth, but caused dose-dependent proliferation of the acute myeloid leukemic cell line, OCI-AML5, and the erythroleukemic cell lines, TF-1, UT-7, and UT-7/EPO. Consistent with this, IL-27 promoted cell survival and reduced TNF-α-induced apoptosis of the leukemic cell lines. IL-27 also decreased the responsiveness of the leukemic cells to chemotherapeutic drugs, cytarabine and daunorubicin. We observed that IL-27 induced the activation of STAT1/3 and ERK1/2 in the leukemic cells. Growth stimulation by IL-27 was suppressed by the specific MEK inhibitor, U0126, indicating that IL-27-induced cell proliferation is mainly mediated through the activation of the MAPK/ERK signaling pathway. The present study is the first demonstration of the proliferative and antichemotherapeutic properties of IL-27 in human leukemic cell lines, suggesting that IL-27 can play an unfavorable role in tumor growth and can be an important determinant in the chemoresponsiveness of certain subtypes of human leukemia.
منابع مشابه
Naringin enhances osteogenic differentiation through the activation of ERK signaling in human bone marrow mesenchymal stem cells
Objective(s): Naringin has been reported to regulate bone metabolism. However, its effect on osteogenesis remains unclear. The aim was to investigate the effect of naringin on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) through the activation of the ERK signaling pathway in osteogenic differentiation. Materials and Methods: Annexin V-FITC assay and MTT assay ...
متن کاملBIOINFORMATIC STUDY ON EFFECT OF XANTHOHUMOL AS BIOACTIVE COMPOUND OF HOP IN THE INHIBITION OF THE MAPK/ERK PATHWAY IN THYROID CANCER
Background: Xanthohumol is one of the main bioactive compounds extracted from the female flowers of the hops plant (Humulus lupulus L), that has been shown in several studies to have anti-cancer effects.The MAPK/ERK pathway is one of the key pathways in the regulation of gene expression, cell growth and survival. The abnormal activation of this pathway leads to the uncontrolled cell proliferati...
متن کاملAssessment of Cytotoxicity of Dimethyl Sulfoxide in Human Hematopoietic Tumor Cell Lines
Background: Dimethyl Sulfoxide (DMSO) is a solvent most broadly used as a cryopreservative agent. Antitumor effects of DMSO is a recently recognized phenomenon. In this study, cytotoxic effects of DMSO on human monocytes and T leukemic cell lines has been investigated in vitro. Methods: Human leukemic T cells (Molt-4 and Jurkat) and monocytes (U937 and THP1) were cultured in complete RPMI medi...
متن کاملTanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling
Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...
متن کاملTSPAN8 promotes gastric cancer growth and metastasis via ERK MAPK pathway.
AIMS This study was designed to investigate the effects of Tetraspanin 8 (TSPAN8) overexpression and TSPAN8 suppression on gastric cancer cell proliferation and invasion. Furthermore, whether extracellular-signal regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway was involved in TSPAN8's function on gastric cancer cells was examined. METHODS The expression of TSPAN8 in hum...
متن کامل